
Mobile Ad-hoc Networks

What is a MANET (Mobile Ad Hoc Networks)?

- Formed by wireless hosts which may be mobile
- No pre-existing infrastructure
- Routes between nodes may potentially contain multiple hops
 - Nodes act as routers to forward packets for each other
 - Node mobility may cause the routes change

Why MANET?

- Advantages: low-cost, flexibility
 - Ease & Speed of deployment
 - Decreased dependence on infrastructure
- Applications
 - Military environments
 - soldiers, tanks, planes
 - Civilian environments
 - vehicle networks
 - conferences / stadiums
 - outside activities
 - Emergency operations
 - search-and-rescue / policing and fire fighting

- Collaboration
 - Collaborations are necessary to maintain a MANET and its functionality.
 - How to collaborate effectively and efficiently?
 - How to motivate/enforce nodes to collaborate?
- Dynamic topology
 - Nodes mobility
 - Interference in wireless communications

Routing Protocols: Overview

- Proactive protocols
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols are proactive
 - Examples:
 - DSDV (Dynamic sequenced distance-vector)
 - OLSR (Optimized Link State Routing)
- Reactive protocols
 - Maintain routes only if needed
 - Examples:
 - DSR (Dynamic source routing)
 - AODV (on-demand distance vector)
- Hybrid protocols
 - Example: Zone Routing Protocol (intra-zone: proactive; inter-zone: ondemand)

Routing Protocols: Tradeoff

- Latency of route discovery
 - Proactive protocols may have lower latency since routes are maintained at all times
 - Reactive protocols may have higher latency because a route from X to Y may be found only when X attempts to send to Y
- Overhead of route discovery/maintenance
 - Reactive protocols may have lower overhead since routes are determined only if needed
 - Proactive protocols can (but not necessarily) result in higher overhead due to continuous route updating
- Which approach achieves a better trade-off depends on the traffic and mobility patterns

Security in Mobile Ad Hoc Networks

<u>Problems</u>

- Hosts may misbehave or try to compromise security at all layers of the protocol stack
- Transport layer: securing end-to-end communication
 - Need to know keys to be used for secure communication
 - May want to anonymize the communication
- Network layer: misbehaving hosts may create many hazards
 - May disrupt route discovery and maintenance: Force use of poor routes (e.g., long routes)
 - Delay, drop, corrupt, misroute packets
 - May degrade performance by making good routes look had

Security in MANET: Agenda

- Key management
- Securing communications
- Dealing with MAC and Network layer misbehaviors

<u>Key Management</u>

- Challenges
 - In "pure" ad hoc networks, access to infrastructure cannot be assumed
 - Network may also become partitioned
- Solutions
 - Distributed public key infrastructure
 - Self-organized key management
 - Distributed key certification
 - TESLA
 - Others